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The calculation of dynamic laser-light scattering by dilute suspensions of Brownian 
particles is reviewed. It is shown that present theories of diffusion can provide 
approximations for the autocorrelation of the intensity of the scattered light that are 
only uniformly accurate for correlation times up to order (Do k2)-' where Do is the 
diffusivity of a single particle and k is the scattering wave vector. The meanings of, 
and connections between, down-gradient, self- and tracer diffusion for both short 
and long times are established and it is shown how these may be inferred from 
light-scattering experiments for optically monodisperse and polydisperse systems. 

For dilute systems, equations giving the time evolution of the intermediate and 
self-intermediate scattering functions, F(k ,  t )  and Fs(k, t ) ,  accurate to first order in 
the volume concentration of particles are constructed, and are solved for suspensions 
of hard spheres with and without hydrodynamic interaction. For short and long times 
(semi-) analytic solutions are given; for intermediate times numerical results are 
presented. The formal correspondence of the limiting values of the time-dependent 
solutions with the results of Batchelor (1976, 1983) and others for steady sedimen- 
tation in polydisperse systems is established. 

1. Introduction 
The technique of scattering laser light from quiescent solutions of macromolecules 

is widely used as a method of determining the translational and rotational diffusivity 
of isolated molecules and thereby extracting information about their size (molecular 
weight) and shape. As the particles of the solution or suspension move under the 
influence of Brownian impacts from solvent molecules, so the instantaneous scattered 
light changes. By monitoring the autocorrelation function of the electric field or the 
intensity of the scattered light, it is possible to infer the motion of the particles and 
thus their diffusivities. The optics of the scattering is well understood (Berne & Pecora 
1976)) and the principal theoretical difficulty in the analysis of experimental data is 
the calculation of the rates of diffusion. For dilute suspensions, where each particle 
is unaffected by its neighbours, the calculation is straightforward, but for more 
concentrated dispersions, considerable complications arise. It is clear that the particle 
diffusion and hence the scattered light are affected by particle interactions and hence 
in principle it should be possible to infer some features of the forces between particles 
by suitable interpretation of the scattering data. We seek in this paper to analyse 
the problem for the simplest case in which interactions are important, namely when 
the concentration # is sufficiently small for pairwise interactions to be the dominant 
effect. 

The problem of including the effects of two-particle interactions has received a 
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good deal of attention. Table 1 gives a partial list of relevant papers. A detailed 
explanation of the symbols used is given in $2. The papers fall into two categories. 
Those influenced by suspension mechanical work on steady transport phenomena in 
two-phase flow have tended to use exact hydrodynamic data (which is an important 
ingredient of the problem), but have provided results appropriate only to special 
limiting cases of the light-scattering problem. Papers in the second category have 
attempted (more) complete solutions of the problem but have used approximate 
hydrodynamic data. For many papers in both categories it is not always clear to which 
regime in wavenumber and time the result applies, nor the extent of its accuracy and 
validity. In this account we seek to combine the better features of both approaches, 
to use exact hydrodynamics whenever possible, and to provide both a physical 
explanation for, and a mathematical proof of, the correspondence between the 
various results which provide partial solutions to  the full problem. The difference 
between ‘exact ’ and ‘approximate ’ hydrodynamics should be amplified since the 
term exact is intended to convey more than mere accuracy. The solution of two- and 
many-body problems in hydrodynamics can in general be achieved only numerically, 
and in consequence the final results are subject to rounding and cut off errors (e.g. 
see table 2). On the other hand, the analytic expressions given are exact, and can 
exhibit qualitative differences from results obtained using ‘approximate ’ data (see for 
example the discussion of $3.2). In $2 we delineate the various timescales of interest, 
and in $3 provide a full mathematical formulation for the dilute limit. In $54 and 
5 we solve the equations in two cases, first for an ‘excluded-annulus’ model where 
hydrodynamic interactions are neglected and where analytic progress is possible, 
and second a numerical solution for the case of hard spheres with hydrodynamic 
interactions. The term ‘excluded annulus’ is intended to convey the physical picture 
of a very small particle surrounded by a much larger region in which the repulsive 
interparticle force (modelling, say, a thick diffusive charge double layer) is high, but 
which cuts off suddenly at a shell radius where hydrodynamic interactions have 
become negligible. (In that case, 9 is the volume concentration given by the outer 
radius of an annulus, not that of the particle.) Our results for the excluded annulus 
are mathematically identical to those of Ackerson & Fleishman (1982) (though our 
interpretation differs somewhat). Our results which include hydrodynamic interactions 
are largely new. 

2. The connection between particle diffusivity and light scattering 

defining the regimes in which its use is appropriate. 
Since the term ‘particle diffusivity’ has several possible meanings, we start by 

2.1. Timescales of interest 
The shortest time of possible interest for the dynamic light-scattering experiment is 
that over which the velocity of an individual particle relaxes after a Brownian impact. 
At  this level, the important physical ingredients are the inertia of the particle (and 
associated fluid) and friction, giving an inertial relaxation time t ,  of order m/6xpa, 
where m is the mass of the particle, a its linear dimension, and ,u the viscosity of the 
fluid. To discuss the dynamics at  these short times it is necessary to use a Langevin 
equation (or to work in phase space), and this leads to a prediction of the ‘long-time 
tail’ (i.e. long when time is scaled with t , )  for the velocity autocorrelation function 
(e.g. Hinch 1975). 
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Without HI 1 +84 1 1-24 - a9 
With accurate HI 1+1.474 1-1.814 1-2.064 -2.224 
Batchelor (1976, 1983) 1 + 1.454 1 - 1.839 1 -2.104 

TABLE 2. Summary of numerical and analytic results 

In this paper we shall be concerned only with times much longer than t ,  so that 
many uncorrelated impacts of solvent molecules have occurred and the corresponding 
momenta have relaxed. In this regime it is appropriate to describe the coupled-particle 
motions by a diffusion equation in physical rather than phase space. The short-lived 
inertial features do not then enter the calculation at  all. The characteristic diffusivity 
of a single particle is given by the Stokes-Einstein relation as Do = AT/Gnpa with 
R Boltzmann's constant and T the absolute temperature. The timescale for diffusive 
motions depends on the length over which the particles are required to diffuse and, 
in a light-scattering context, this is the wavelength 2n/k of the scattering vector, 
which may in principle be varied ad lib. It is only when the particles have diffused 
over the wavelength of the scattered light that intensity autocorrelations can 
be changed significantly. Thus the timescale of importance in experiments is 
t ,  = (D0k2)-'. In practice it is difficult (at the present time) to achieve reliable 
experimental results for the autocorrelation function once t 2 3t,. 

There are, in addition, further natural lengthscales associated with the suspension 
itself rather than the light, and these give rise to further diffusion timescales. In 
particular t ,  = a2/Do is the time taken for a particle to diffuse across its own diameter, 
and t4 = a2$-g/Do is the time taken to diffuse across a typical particle separation 
distance, a$-$. The significance of this timescale was suggested in this context by 
Pusey (1975). He (and others) have used the term 'cage' to describe the lengthscale 
determined by mean neighbours of a test particle. For a dilute suspension $ 4 1, and 
so t# P t , .  

2 .2 .  The meaning of diffusivity 
There are (at least) two meanings which may naturally be attached to the term 
'particle diffusivity '. First, an experiment may be imagined in which a steady small 
concentration gradient Vq5 of particles is maintained and in which the resulting flux 
F of particles down the gradient is measured. The constant of proportionality Dc(q5) 
is called the collective or down-gradient diffusivity so that 

F =  -P($)Vq5.  

Second, a quiescent suspension (in equilibrium) may be considered and the 
mean-square displacement of a given particle starting at the origin monitored as a 
function of time t .  Taking an ensemble average over all other particle motions, the 
test particle 'sees' for short times an isotropic cage surrounding it (which affects its 
motion only in modifying its hydrodynamic resistance), and thus its motion is 
diffusive in character with ( r 2 )  cc t .  This purely diffusive motion can persist for as 
long as the configuration of particles surrounding the test particle is not influenced 
significantly by the motion of the test particle, for thereafter its velocity ceases to 
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be a stationary random function of time. This was first noted in a related context by 
Ermak and Yeh (1974) and has subsequently been developed by Pusey (1975) for light 
scattering and by Batchelor (1976) for diffusion (see also the careful discussion in 
Pusey & Tough 1982). At first sight it may be thought (Pusey 1975, 1978; Batchelor 
1983) that the purely diffusive motion persists until the test particle has diffused to 
its mean nearest neighbour (i.e. t+) .  This conclusion is wrong, however, since when 
a test particle has diffused only over its own length (in a time t,) there is already 
an O($)  probability that it will have collided (or interacted significantly) with a second 
particle, and in consequence there will be an O($) modification to its motion. Thus 
for non-zero $, the purely diffusive character of the motion persists only for t 5 t ,  
and there is thus a short-time self-diffwivity D:($) such that 

( r 2 )  N 6D:t for t ,  + t < t,. 
Thus the concept of a ‘ cage ’ whose size depends on concentration, though intuitively 
appealing, can give incorrect quantitative estimates of the important timescales in 
the diffusion problem. For t comparable with t, a test particle interacts with its 
neighbours (which presumably slow it down) and its motion cannot be described by 
a pure diffusion process, i.e. ( r 2 ) / t  + constant, and the probability density for r is 
no longer Gaussian. But for long times t B t ,  the test particle will have had many 
(uncorrelated) encounters with other particles and the sum of these random steps is 
again a diffusion process with a long-time self-diffusivity DS,($) such that 

( r 2 )  - 6D:t for t B t , .  

It may be worth mentioning at this point a conceptual issue which is the source 
of some confusion. By restricting attention to times t %- t ,  we are able to neglect 
inertia and so velocity autocorrelations do not appear as such in our analysis - only 
positional correlations (for the particles ; the individual solvent molecules do not 
appear directly in the calculations at all). It is equally legitimate, however, to consider 
the particles as if they themselves constituted the molecules of a new ‘fluid’ (even 
though these motions are governed by a Smolochowski equation rather than a 
Langevin equation). In that case it is natural to speak in terms of velocity 
autocorrelations for the particles (see e.g. Hanna, Hess BE Klein 1981) and, in this 
framework, DS, is the integral of the velocity autocorrelation over times long compared 
with t,. In  other words t ,  from this perspective plays the role of 1, from ours, even 
though the physics for t 5 t, (particle-pair distribution coming to equilibrium) is 
entirely different from that for t 5 t ,  (viscous decay of Brownian impulse). 

One further type of diffusivity should be mentioned here where two species of 
particle are present : a relatively numerous quiescent species with concentration q5, 
and a labelled (‘tracer ’) species otherwise identical to the first whose concentration 
q5tr is very low (dtr -4 d) but in which there is a gradient Vdtr and hence a flux &. 

It is perhaps conceptually easiest to imagine a quiescent suspension of a single 
species in which at some initial instant ( t  = 0) a very few tracer particles are suddenly 
labelled in such a way that a small gradient of tracers exist. (This might seem a 
difficult experiment to set up, but i t  is, in essence, what the optically polydisperse 
light-scattering experiment achieves.) 

Since any given labelled particle interacts only with unlabelled particles (neglecting 
effects of order $tr/q5), its motion is unaffected by the small concentration gradient, 
so that its mean drift is zero and its r.m.s. displacement ( r 2 )  is identical a t  all times 
with that for the monodisperse suspension discussed above. This tracer situation is 
therefore formally identical with the down-gradient diffusion of an infinitely dilute 
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FIGURE 1. Schematic sketch of the light-scattering apparatus. 

singlespecieswhosediffusivity variesintimein aprescribed manner. Theinstantaneous 
tracer flux is therefore 

and Dtr($, t)  = +(d/dt) (r2). We supply a formal proof of this assertion in Appendix A. 
In the particular limits t+O and t - t  00, ( r 2 )  oc t as above, and then 

Ftr = -Dtr($, t)V$,r 

D"($,O) = D:(d),  m) = Ds,($), 
so that self-diffusivities may alternatively be regarded as tracer diffusivities. 

At zero concentration, all the diffusivities above are equal (to Do). For non-zero 
$ they differ however, e.g. for rigid spheres with hydrodynamic interaction, Batchelor 
(1976, 1983) gives the following results correct to O($) : 

I)'($) = D,(1+ 1.45$), 

I):($) = Do(l - 1.83$), 

Ds,($) = Do(l-2.1O$). 

2.3. Interpretation of light-scattering results 
The question arises as to which of the diffusivities (if any) is measured by light 
scattering. Our discussion here is an amplified version of that of Fijnaut (1981). In  
the experiment shown schematically in figure 1,  an incident monochromatic plane 
wave generated by a laser with wave vector k, is scattered by each particle of the 
suspension (whose positions are xt(t) (i = 1, ..., N)), and the scattered light is 
measured in a direction which is specified by an outgoing wave vector k, (and 
Ik,( = lk,l). Then, neglecting multiple scattering, the electric field of the scattered 
light a t  x is proportional to 

where ai is the amplitude of the scattering by particle i. Thus the phase shift by 
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particle i is eik'xt(t) where k = k,-k,  is the scattering vector. It follows that the 
autocorrelation function of the scattered light at a time delay t is proportional to (the 
ensemble average of)  N 

a a eik.(xi(t)-Xj(O)). 
a j  

i , j - l  

(This result is established above only for the electric Jield of the scattered light ; it  is 
often more convenient in experiments to measure the intensity of the scattered light, 
but it may be shown (Berne & Pecora 1976) that provided JV 9 1 the same averaged 
quantity is involved.) 

There are two forms of the light-scattering experiment. The conceptually simpler 
uses optical polydispersity so that the scattering amplitudes at vanish (or are 
comparatively small) except for a subset of XI( 9 1 but + X )  tracer particles for 
which ai = 1. In  that case the scattered light is proportional to 

F, is called the self-intermediate scattering function. In the second experiment, all 
the particles scatter light equally, at = 1 for all i ,  and then the autocorrelation is 
proportional to the intermediate scattering function F(k,  t )  where 

In each case the angle brackets denote an ensemble average. 
For dilute systems, correlations between different particles are negligible and thus 

F = F,. Equation (2.4) shows that F, is then just the Fourier transform of the 
displacement of a single particle which is a Gaussian distribution. It follows that 
F = F, = eckZDot. But for non-dilute suspensions F =I= F, and, as noted in $2.2, the 
statistics are no longer Gaussian so that a purely exponential decay of F and F, cannot 
in general be expected. We discuss the interpretation of the two experiments below. 

The tracer experiment 
It is natural to guess that, for the extreme times t < t,, t 9 t ,  discussed earlier when 

pure diffusion obtains, the autocorrelation will again be exponential with diffusivities 
D: and 0% respectively. For short times this conclusion is correct, but surprisingly 
it is not necessarily correct for the long-time limit as the following model calculation 
demonstrates. 

Consider a very dilute suspension containing particles of two species both of which 
scatter light (equally, say), whose diffusivities are D,, D, (< Dl)  and for which 
q5, < q5, + 1 .  Then the probability distribution for a particle chosen at  random that 
starts at the origin is 

This distribution gives a mean-square displacement at  time t 

( r 2 )  = ( 1 - ~ ) 6 D l t + ~ 6 D , t  $1 

$1 

x 6D,t, 
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with relative error of order at all times. I n  other words, the particles of species 
2 are so rare that the mean long-time diffusivity of a particle chosen a t  random is 
D, as expected. On the other hand (either form of)  the light-scattering experiment 
measures the spatial Fourier transform of P,  viz. 
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and thus for sufficiently long times, however small $z/$l is, the second term 
dominates, so 

and so the diffusivity measured is D, not D,. This model calculation demonstrates 
that  at large times (i.e. large values of Dk2t) the most significant contribution to the 
autocorrelation function comes from the structures in the suspension with a smaller 
diffusivity, rather than the long-time behaviour of the most common particles. (Since 
D - AT/6xpa, the structures with smaller diffusivities are the larger ones.) 

I n  any suspension that is not at infinite dilution, groups of two or more particles 
always exist in close proximity, albeit transiently, and, in a fairly dilute system, 
progressively larger groups will occur with decreasing probability. The measured 
p(k, t )  will therefore be a complicated sum of small terms (for t 9 t , )  whose total is 
not expected to  be a single exponential, and whose instantaneous slope does not 
necessarily represent D g .  From a theoretical point of view, this also means that a 
small-$ expansion is bound to  fail in the limit t 9 t, since groups of particles give 
$,, qP, . . . , contributions which are neglected at the outset. Thus the limit t 9 t ,  lies 
outside the scope of the analysis of this paper, is not expected to be a single 
exponential, and is difficult to obtain experimentally too. 

The Dg diffusivity may nevertheless be measured if both the criteria t p t ,  and t 5 t, 
are satisfied. These are simultaneously possible only if ka < 1. I n  this case there is 
an intermediate time regime in which a particle can diffuse through many particle 
diameters before diffusing through a wavelength. Further, in this long-wavelength 
limit the identification of ‘tracer ’ and ‘self’ properties may be made for all times t 
(not just t 9 t ,) as shown in Appendix A. Hence the mean-square particle displacement 
can be identified as 

( r 2 )  = -- k2 1 og F, as ka+O. 
6 

Validity of the two-particle expansion 
I n  calculating the lowest-order effect of particle interactions on steady suspension 

transport properties (the O($)  term here) it is generally appropriate to examine 
pairwise interactions between particles. We have noted above that this procedure will 
produce non-uniform approximations in time whenever t 9 t , .  The timescale t, 
depends, of course, on the experiment and not the suspension, and so the question 
arises as to  whether other non-uniformities of approximation can occur owing in 
particular to  repeated collisions between particles if only painvise interactions are 
considered (and t % ta ) .  

It is certainly the case that if a pair of test particles is chosen, and the pair diffuses 
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apart, then if t S t ,  the specific pair ceases to represent the pair-distribution function 
for test particles in the suspension as a whole. But if for a given test particle all 
possible neighbours are considered (whatever their initial position may have been), 
then the pair-distribution function is representative at  all times, and the only error 
in dealing with pairwise interactions alone is the neglect of occasional three-particle 
collisions. 

So far as the steady diffusivities are concerned, these three-particle effects 
undoubtedly generate 0($2) corrections which we neglect here. In regard to the 
time-dependent behaviour they introduce contributions which become significant 
only when t - t,. 

In  summary, then, for times t 5 t ,  a uniformly valid approximation at  O($)  
may be obtained by considering just pairs of particles, provided that all possible 
neighbours of a test particle are included. 

The monodisperse experiment 

density of particles is given by 
On noting that eik.xf(t) is the Fourier transform of a(x -x , ( t ) ) ,  and that the number 

N- 

i - 1  
n(x, t )  = x S(x-x , ( t ) ) ,  

(2.5) shows that 
1 

JV 
F(k, t )  = -((rZ(k, t )  fi*(k, 0 ) ) ,  

where - denotes a Fourier transform and * is a complex-conjugate. As the constant 
background level of n is irrelevant, F(k, t )  may be regarded as measuring the 
autocorrelation of $fluctuations in number density fi’(k, t )  at wavenumber k.  

This interpretation is helpful in understanding three limiting circumstances. First, 
at the initial instant, if the particles were independent then fi’(k, 0) (as the sum of 
JV random variables, e*k’xf with mean 0 and variance 1) would have mean 0 and 
variance Xi ,  giving the static structure function F(k, 0) = 1. But, by virtue of 
interparticle forces, the particle positions are not independent even a t  t = 0 and the 
departure of P(k, 0) from unity therefore provides a measure of the equilibrium 
pair-distribution function at wavenumber k (see $3 .2 ) .  

Second, if ka g 1 the scale of the number-density fluctuation to be considered 
is much greater than the size of an individual particle. It follows that the flux of 
particles down the gradient is the same as if the gradient persisted everywhere, i.e. 
-DcVn’. Thus the fluctuation decays exponentially at a rate -DCk2. Further, 
the pair-distribution function varies on a lengthscale a, so F(k, 0) - 1, and hence 
F(k, t )  - ecDCkZt as ka-+O. 

Third, if ka 9 1 then the relevant scale of number-density fluctuations is small 
compared with the size of an individual particle. Hence it is only the motion of a single 
tracer particle which matters. If further t 5 t ,  then t 4 t ,  so that the structure of 
the pair-distribution function is still isotropic and therefore A’ decays by a purely 
diffusive mechanism and the relevant diffusivity is DZ. On this timescale the structure 
function F is unchanged from its static value and so 
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I n  summary, the steady particle diffusivities may be identified in dynamic 
light-scattering experiments in the following limiting circumstances : 

F 
k2F 

D c = - -  forka+O and tst, ,  

Fs fort, 4 t 4 t, if ka 4 1.  D:= -k2F, 
We now turn to a mathematical formulation of these ideas. 

3. The governing equations 

3.1. Formulation of the problem 

We consider a suspension of JV >> 1 spherical particles, identical except, perhaps, 
for their optical properties, which occupy a large volume f .  We suppose that the 
particles may be regarded as point scatters of light (at their centres) and that the 
optical contrast between particles and solvent is sufficiently small that multiple 
scattering may be neglected. 

Suppose first that  the particles are optically monodisperse. Then the intermediate 
scattering function F(k, t )  is given by (2.5) as 

) 
1 M  F(k, t )  = - eiR.(x&-xj(o)) . 

(x  i, j -  1 

A similar expression, (2.4), gives Fs(k, t )  for the polydisperse case. Here the angle 
brackets represent an ensemble average over all possible initial configurations of the 
suspension, and over all configurations a t  time t which started from that a t  t = 0. 
Thus if Po(xi(0)) is the probability density for the set of positions a t  t = 0, and 
P(xi(t)lxj(0)) is that  for the set of positions xi at time t ,  given that the particles 
occupied positions xj(0) a t  t = 0, then 

(.  ) = J v ; M ~ ( ~ i ( t ) ~ ~ j ( o ) )  ~ ~ ( 0 ) )  d 3 ~ ~  d3+j(0). (3.1) 

We assume that the suspension is a t  thermodynamic equilibrium, and that (direct) 
interactive forces between the particles may be described by a potential given (in 
terms of a dimensionless function) as I&TV(xi). Then a t  time t = 0 the probability 
distribution for the particle positions is Maxwell-Boltzmann with 

where Z is a normalization factor given by 
,. 

We now specify the way in which the structure of the suspension changes in time. 
On the assumption that t + t , ,  the evolution of P may be described by a diffusion 
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process, and furthermore the hydrodynamic interaction between particles i and j is 
described by the mobility tensor ( l /AT)  D,, which depends on all the instantaneous 
particle positions xk(t). P then satisfies the N-particle Smolochowski equation 

” p = V , * D i j . ( V j P + P V , V )  at (i,jsummedfrom 1 t o N ) ,  

with the initial condition 
”N 

(3.3) 

and the boundary condition that the flux of P through the walls of Y“ is zero. 
Two (exact) simplifications may now be made. First, we may exploit the fact that 

the scattering particles are identical to choose any one as representative and thus 
(2.4) becomes 

and similarly (2.5) may be written 

F(k, t) = F!(k, t ) +  (JV- 1) <eik.(xJt)-xl(0))). 

Second, the ensemble average over the initial values x,(O) may be performed 
analytically by the following device. Define 

P(x, (t)(x,(O)) e-ik ’xl(o)-v(xdo)) d3~%,(0). 
1 

P(x,, t ;  k) = - 
2 L x  

Then from (3.4), P satisfies the initial condition 

(3.5) z 
Further, since in the evolution equation (3.3) for P the initial values ~ ~ ( 0 )  do not 
occur explicitly, P also satisfies equation (3.3). Finally, the expressions for the 
ensemble averages may be simplified to 

P(x,, 0; k) = - 1 e- i h x , - V ( x t ) *  

3.2. Initial values of F and dF/dt 

We can now use the initial condition (3.5) for P to obtain the static values F(k, 0), 
Fs(k, 0). For F we have 

Defining the structure function g(r) (with r = x,-x,) as 

where. n = N/Y is the (uniform) particle number density, and taking the thermo- 
dynamic limit N+ 00, Y +  00 with N/V  constant, F may be written 

F(k,  0) = 1 + NS(k)  + n S(g ( r )  - 1)  eik’r d3r, (3.8) 
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with the integral taken over all r-space since g+ 1 rapidly as I r [ /a+ co. F(k ,  0 ) ,  often 
written S ( k ) ,  is called the static-structure function. The S-function contribution (the 
Fourier transform of the large scattering volume V )  is independent of time and so 
irrelevant to our subsequent discussion and will be ignored. 

The analogous result for F! is simply 

Fs(k, 0) = 1. 

To obtain the initial slopes p ( k ,  0 ) ,  p,(k,  0 ) ,  we substitute the initial value of ap/at 
obtained from the Smolochowski equation (3.3) and integrate by parts to give 

This expression admits an especially simple physical interpretation. Regarding the 
diffusivities as mobilities, - p ( k ,  O) /kz  is the rate of sedimentation of a test particle 
when a modulated ‘gravitational’ force f eik‘(xz-xl) is applied to every particle in a 
suspension at thermodynamic equilibrium. Russel & Glendinning (1981) have used 
this interpretation to exploit Batchelor’s (1972) work on sedimentation and derive 
P ( k ,  0) for arbitrary values of ka for dilute suspensions with accurate h drodynamics. 

suspended particle, and then - p / k 2 F  is just the collective diffusivity Dc as discussed 
in $2.3 (cf. Batchelor 1976). The expression above is ill-suited for computation of Dc 
because in the limit Y --f co the integral diverges due to the long-range 1/r behaviour 
of D12. In $3.4 we give (for dilute suspensions) a more suitable convergent expression. 
The equation above for P ( k ,  0) has been obtained in related contexts by many authors 
(see e.g. Akcasu & Gurol 1976 for polymers). 

If ka is small, then the modulation is slight so that the same force I l  acts on every 

The corresponding result for F, is 

1 
ps (k ,  0) = -- { k . D l , * k  e-v d3” x2, 

Y-K 

and hence (for all values of ka)  - p , ( k ,  O)/k2 is the sedimentation rate of a tracer 
particle (the other particles being force-free), and so -ps/k2Fs is the tracer or 
self-diffusivity D:. 

The question arises as to whether we can use the Smolochowski equation (3.3) to 
continue this process and obtain P(k ,  0) and higher derivatives (i.e. second, third and 
higher cumulants in the sense of Koppel 1972). The answer depends on the degree 
of differentiability of p at t = 0, and this in turn on the (spatial) analyticity properties 
of D ,  and V .  We show later ($$4.1,4.2) that, for hard spheres without hydrodynamic 
interactions, P ( k ,  0) does not exist, whereas for hard spheres with hydrodynamic 
interactions P ( k ,  0) exists but F ( k ,  0) does not. Calculation of cumulants must 
therefore be conducted with care. 

To make further progress we now restrict attention to the case where the particle 
concentration is small. 

3.3. Dilute approximation 
The aim of our calculation is to compute F and F, correct to O($)  for t 5 t,. It is 
convenient for this purpose to define probability densities pq for groups of q test 
particles chosen at  random as 

pq(xl,  ..., xq, t ; k )  = P(x,,  ..., x N ,  t ; k )  d3xq+, ... d3x,. 
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It follows that Pq is of order ngas n+O for q 4 JV. Without approximation we may 
then write 

Fs(k, t )  = % 5 eik'xip 1 1  d32 
v 

1 
P(k, t) = Ps(k, t)+- e ik 'x~( l?2-n~)  d3x1 d32,. ./v I$,-, and 

It follows that, in order to achieve the desired accuracy in F and Fs, it will suffice 
to obtain pl correct to O(#),  and P2 correct only to O(1). Furthermore, it is clear that 
to achieve an accuracy of O($,),  the diffusivities D, must be calculated for sets of 
three interacting particles. No universally valid results (numerical or analytic) for 
the associated mobilities are available at present. It should be emphasized that 
although the result 

is exact, an O ( 1 )  estimate for p2 used in this equation will not produce a sufficiently 
accurate value for pl. In addition, since P involves an average over all possible initial 
configurations, p2 gives the pair-distribution function to sufficient accuracy at all 
times t (see the discussion at the end of $2.3). 

Now Felderhof (1978) has shown that correct to 0(1), pz may be determined by 
solving a two-particle Smolochowski equation 

2 = V, D ,  - (v, P, + P, V, V )  (3.9) 

in which the isolated two-particle values are used for D ,  and V .  In Felderhofs 
derivation, the assumptions are made that hydrodynamic interactions and potential 
forces are pairwise additive. We demonstrate in Appendix B that the assumptions 
are in fact unnecessary, and show further that an O($)-accurate equation for pl is 

aP 
at 

(sum over i, j = 2), 

aP 
A = Do Vf P, +V,* [(D,,- Do/).V, P2 + D,,*V, P2 

+ ~ , ( D , ; V ,  V+D1,.Vz V ) ]  d3 2,. (3.10) 
at Jv 

At  the same level of approximation, we have as initial conditions 
p - ne-ik.xl p2 = n2 ,-ik.X,-V 
1 -  , 

Now at present p2 depends on the six spatial variables x,, x,, but the problem may 
be further reduced by noting that Pl and P2 take the following forms: 

Pl(x,, t)  = n e-ik.Xlfl(t), 

pz(xl, x,, t )  = n'- e-ik'x1-kik'rf2(r, t)  with r = x2-x1. 

It is then straightforward to show that 

- "' = - k * D, * kf, + V * D, * (Vf, + f, V V ) ,  
at 

(3.11) 

dfl = - k2Do f, + ik. [(Dt-+Do/) -ikf2 + (20,- Do /) *Vf2 + f2+D, * V v ]  eak"n d3r, 
(3.12) 

dt 

where now V E a/ar, D, = +(D1,+Dl,) and D, = 2(D1,-D1,) and the integral may 
be extended to the whole of r-space. D, and D, are the diffusivities for centre-of-mass 
translation and for relative motion of two particles respectively.. 

I - 
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The initial conditions become 

fl = 1, fz = e4ik.r-V a t  t = 0. 

The boundary condition as r+  co is that Pz cc eik'xl so that fz N e?ik'r-Dokgt. The 
scattering functions become 

F(k, t)  =f,(t)+ ~(fz-e~ik'r-kxDot) efik"n d3r, 

FS(k t) =f,(t). 

A final manipulation which is useful for subsequent calculation is to differentiate the 
above expressions for F and Fs above with respect to time, use the results for dfl/dt 
and afz/at and integrate by parts to obtain 

- = -k2DoF- [k.(D,,-D,/).k 2 c0sik.r 
d F  
dt 

+ (V - (D, * k) - k . D, * V V) sin +k * r] fz n d9r, (3.13) 
I 
s 

+ V * (iD;k) -iik.D, .V v] e-iik'rfz n d3r. (3.14) 

Associated with these are the initial values F(k, 0) and Fs(k, 0) obtained in 53.2 which 
at this level of approximation may be written 

-- dFs - -kzDoFs- [k*(D,,-D,/)*k 
dt 

F(k, 0) = 1 + n  (e-V(r)-l) eik'rd3r; Fs(k, 0) = 1. (3.15) 

So far we have considered a fully general potential interaction V(r )  between the 
particles. It is now convenient to specialise to the case where the particles are rigid 
spheres of radius a,  possibly with other 'soft ' interactive forces at  separations greater 
than 2a. We therefore suppose that V can be decomposed as 

v =  P + P  

where vh + co as r + 2a, and P (and also D )  are defined only for r > 2a. Thenf, varies 
rapidly in a boundary layer near r = 2a, and, as shown in Appendix C, (3.13) and 
(3.14) become 

- = -Do k2F- dF 

I 

k*D,-P sin+k*r f zn  d2r 
dt r - z a  

- [k * (D,, -Do /) k 2 cos !jk* r + (V - (D, * k) - k - D, - V P) sin !jk . r ] f z  n d3r, 

(3.16) 
J r  > za 

-- dFs - -Do k2Fs- +k*D,-P e-@k'rfzn d2r 
dt S r  - za 

- s [k - (D,, - Do /) * k + V * (+D, * ik) - iik * D, * V PI efik"fZ n d3r. (3.17) 
r z za 

The functionf,(r, t )  is now governed by 

- "2 = -~.D,.~~~+v.D,.(v~~+~~vP) for r > 2a (3.18) 
at 
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and subject to the boundary condition that the flux off, through r = 2a is zero 

3 . D r . ( V f 2 + f 2 V P )  = 0 at r = 2a, (3.19) 

the condition at infinity f2 - e@k'r-Dok8t; and the initial condition 

I eiik.r-Vs for r >  2a at t = 0 , 1  
f 2 =  lo 

r < 2a. 
(3.20) 

At this point we have constructed governing equations for a dilute suspension valid 
correct to O(q5) for arbitrary ka, and for all times t such that t ,  4 t 6 tk. In  $$4 and 
5 we provide analytic and numerical solutions. First, however, we discuss the simpler 
cases introduced in $2 where purely exponential behaviour of F and Fs is expected. 

3.4. Short-time behaviour t 4 ta 
This is the same limit as that discussed in $3.2 for arbitrary concentrations and 

provides a check on the manipulations performed here so far. Using the initial 
condition (3.20) forf, and substituting in (3.16) we obtain (using symmetry) 

P(k, 0) = -k2DoF(k,  0 ) - 7  k. 0,. p eik.r-VSn d2r 
21 r-2a  

1 - [k. (Dll - D o / )  *k (1 +eik'r) +7 (V * (D;k) -k* D;V P) eik.r] e-"'n d3r. 
J r  > 2a 21 

Now, on noting that 

V . 0 ,  = V.(D,-D,"), V*D , ,  = V*(D12-D,",), 

where 0," is defined to be the far-field terms of order l / r  and l/r3 in 0, (whose 
divergences exactly vanish), and D,", is similarly defined from D,,, an integration by 
parts gives 

P(k,  0) = - k2Do F(k ,  0) + ik . (iD," - Do /) - P eik'm d2r 
r - z a  

-J r > 2a 
[k . (D , , -D , / ) . k  e-Vs+(k*D,2.k e-V"-k.D,",.k) eik'r]n d3r. (3.21) 

This expression is indeed the renormalised dilute form for the modulated sedimenta- 
tion problem discussed in $3.2. It is noteworthy that the divergence difficulties due 
to long-range O( l / r )  interactions which bedevil suspension mechanical problems 
(Batchelor 1972) are avoided, since i t  is V * 0, rather than 0,. itself which appears in 
(3.16). The above theory therefore provides a formal justification for 'subtracting off' 
the divergent terms as suggested by Batchelor ( 1972), and for the analogous methods 
of Ackerson (1976) and Felderhof (1978). 

The corresponding result for ps(k, 0) is 

Fs(k, 0) = - k2Do - J k * ( D l l - D o / ) . k  e-vsn d3r, 
r > 2a 

(3.22) 

in agreement with $3.2, for which no divergence difficulties arise. 
In the case where P = 0, and for exact hydrodynamic interactions, the evaluation 

of the integrals in (3.21) has been performed for general ka by Russel & Glendinning 
(1981), and for the particular case ka 4 1 (in which all the particles experience the 
same 'gravitational' force) by Batchelor (1976) to give the results (2 .1) ,  (2 .2) ;  and 
for the case ka 4 1 and a general form of P by Batchelor (1983). 
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3.5. Long-time behaviour ka 4 1 ,  t ,  4 t 5 t ,  

As noted in $2.3, the long-time behaviour t 9 t ,  is amenable to interpretation (and 
experiment) only if t 5 t , ,  which requires ka 4 1 .  Some analytic progress is possible 
in that case as follows. 

In  the limit ka 6 1 ,  (3.18) becomes 

- _  af2 - V-(D; (Vf2+f2VP) )+O(k2a2)  for r > 2a, 
at 

with initial condition (3.20) 

f2 = e-VS(1++ik-r+O(k2a2)) for r of order a. 

Furthermore, on a timescale for which t 4 t ,  (as may be established in detail by a 
two-timing analysis, Rallison & Leal 1981) f2 achieves an equilibrium in which the 
initial value is unchanged as r / a  + 00. 

Writing f2 = e-"'( 1 + iik - r - ip(r)), we find p is determined by the equations 

V*(e-V'D,-Vp) = V.(e-VSDr.+k), (3.23) 

p+O as r /a+co ,  (3.24) 

and P-D;Vp = ik*D,.P on r = 2a. (3.25) 

Furthermore on this timescale we may write 

and it follows from (3.17) that  
F, = 1-DDS,k2t, 

+$J [k * (Dll - Do I )  * k +&V * (D, * k) -&k * D, * V P] e-vs d3r. (3.26) 

Now this calculation may be compared with that of Batchelor (1982) for the (long-time) 
sedimentation rate of tracer particles ( A  = 1 ,  y = 0 in his notation) in the low- 
PBclet-number limit. The quantity p ( r )  defined here proves to satisfy the same 
equations as his p(l)(r) (see in particular his equation (4 .26)) ,  and 0% is the 
sedimentation rate (when k is identified with gravity) at long times. Using exact 
hydrodynamics, D, = 0 when r = 2a and so the first integral in (3.26) vanishes. The 
remaining integral contains three contributions which are identified by Batchelor as 
the additional sedimentation fluxes arising from : first, the modified mobility of a test 
particle due to its neighbours (his equation (6 .10) ) ;  second, the additional Brownian 
flux due to non-uniformity of the pair-distribution function (his (6.12) but with a sign 
error corrected later - see corrigendum 1983) ; and third, the interparticle potential 
(his (6 .11)) .  For Vs = 0, Batchelor & Wen (1982) have given the result (2.3) for DDS,,, 
and have also displayed 0% for other simple choices of P. 

T > 2a 

3.6. Discussion 

The O(#) light-scattering problem has now been reduced to the solution of a 
three-dimensional diffusion equation (3.18) together with the evaluation of two 
integrals (3.16), (3.17). Further analytic progress is difficult since the fluid-dynamical 
diffusivities Dij(r) are themselves determined by solving the Stokes equations for two 
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spheres and are known only numerically for general values of r. In $5, therefore, we 
generate a numerical solution of the full problem, but first, in order to develop greater 
physical understanding and to provide a check on the numerical accuracy, we treat 
a simpler case where the hydrodynamics have been artificially simplified. 

4. The excluded-annulus model 
We consider a model problem in which (i) hydrodynamic interactions between 

particles are neglected so that Dt = +Do/ and D, = 2D0/ are both constant; and (ii) 
the particles interact only via a hard-sphere repulsion at  r = 2a so that P = 0. 

The problem to be solved can then be written 

(4.1) -- = -!jk2fa+2PfZ ( r  2 2a), Do at 

with boundary conditions 

The scattering functions are given by 

~ = - k 2 D o F - 2 D , n  1 k.3 sinikqr f, d2r, 
r-2a 
,l 

with initial conditions, from (3.15), 

cos2ka-- 2ka = 1-- j1(2ka) ,  12' 
(4.6) sin 2ka> ka 

F(k,  0) = 1 +- 
F@, 0) = 1, J 

wherej, is a spherical Bessel function of the first kind. The result for the static 
structure function F ( k ,  0) is well known, and gives the asymptotic limits 

In  the first of these, pair correlations are important only in generating an excluded 
volume for pairs of spheres); in the second, the lengthscale of interest k-l 
is so short that, as noted in $2.3, pair correlations are altogether negligible. 

4.1. Solutions of the equations 
We seek a solution to (4 .1)  by expandingf, aa a far field together with a disturbance 
written as a sum of spherical harmonics, i.e. taking 8 = 0 parallel to k, 

Q) 

e$k-r-D,k*t+ 
f (n)(rI t )  p n  ( c o s ~ ) ,  

n-o 
f z  = 
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with f ( n i + O  as r+m. By orthogonality we obtain an evolution equation for each 
harmonic in the form 

Now, noting the identity 
m 

n-o 

the boundary condition (4.2) gives 

e$ik.r = E (2n+ l)injn(+kr) Pn(cosB), 

* a n -  - -(2n+1)inikjH(ka) ecDokZt at r = 2a. 

On taking Laplace transforms which we denote by -, and with p the variable 
conjugate to t ,  we may solve for f ( n ,  to obtain 

in which 

and kn is a modified spherical Bessel function of the third kind. This expression for 
f 2  may now be substituted in (4.4), (4.5) to  give, finally, for the Laplace transforms 
of F and F, 

kn(2A) 

{ l + ~ j ~ ( 2 k u )  [ 1+ p+Dok2 1 P =  
p+Dok2 

24q5D0k2 
p+Do k2 

(2n+1) (jk(ku))22Akk(2Ad 9 (4*7) - 
n,  even - 0 

1 2q5D0 k2 (2n+ kn (2A ) 
O3 1 

Ps = p + Do k2 { l -  p + Do k2  ( j k  (ka))2 2Akk(2hd * (4*8)  
- o  

It is not possible to invert these Laplace transforms in general, but some special cases 
can be examined. The results have been derived independently by Ackerson & 
Fleishman (1982), Hanna et al. (1981), Jones & Burfield (1982) and Felderhof & Jones 
(1983), and thereby confirm the formal correctness of the manipulations of $3. The 
interpretation of the results which follows differs somewhat from theirs. 

4.2. Short-time behaviour t ,  4 t 4 t ,  
The limiting behaviour for t + O  can be obtained by examining the limit p-+ 00. As 
p+00, so A+m and 

1 1  +-+... foralln. kn(2A) 
2Aka(2A) - -% 4A2 

Then, using the identities 
m m 

n-o n-0 
Z (2n+ 1 )  ( j k ( ka ) )2  = 4, Z (-)"(2n+ 1 )  (i;(ka))2 = --ji(2ka), 
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we obtain the short-time asymptotes 

Fs = 1 - 7 + + 2 + # $  [ ( ~ I T ) ;  4 ka 7t 2 3 (ka)2 7 2  +...I, (4.10) 

in which we have set 7 = Do k2t.  In particular this gives $(k ,  0) = Ps(k, 0) = -Do k2 
in agreement with $3.4 when hydrodynamic interactions are neglected. What is more 
surprising is the appearance of the 4 terms, which imply that P(k, 0) and &(k, 0) 
do not exist in this case. These non-analytic terms arise from a diffusive layer of 
thickness (Do t)i near the boundary r = 2a, in which the failure of the initial conditions 
(4.3) to satisfy the boundary condition (4 .2)  is rapidly corrected. Pusey & Tough 
(1982) have also shown that the second cumulant l" is infinite at  short times, and 
in the ka -4 1 limit Hanna et al. (1981) have demonstrated that oc (Do t/a2))-t as 
t + 0 by an alternative method. 

4.3. Very long times t % t k  

The limit of very long times, t % tk is not physically important for the reasons given 
in $2.3, but we include it here both for completeness, and as a check on the numerical 
results in $5. The limiting behaviour as t --f 00 is dominated by the singularity in P 
and Fs with the largest real part in the complex p-plane. This is a branch point 
(overlooked by Ackerson & Fleishman 1982 and by Felderhof & Jones 1983) at h = 0, 
i.e. p = -+Do k2. As h+O the expansion of kn(2A)/2hkk(2h) has a first non-zero odd 
power in h of order h2n+1. (The even powers are irrelevant as they do not involve a 
branch point singularity.) The dominant term in the infinite sums in (4 .7) ,  (4.8) is 
thus n = 0, and 

ko(?) -- 1+2h-4h2+ ... as h+O. 
2hk0( 2h) 

This gives the (very) long-time asymptotes 

and 
48 e-3 

3'' = e - T + $ - ( j i ( k a ) ) 2 k a T ,  
(2R)i 7 9  

(4.11) 

(4.12) 

in which we have again used 7 = Do k2t. 
The surprising appearance of the second term in these equations (which dominates 

the first as t + co however small $ is) arises as follows. The exponential factor comes 
from the translational diffusion of a pair of particles through distances of order k-' 
which is slower than that for a single particle (cf. the example of $2.3) .  The t-1 term 
comes from the relative diffusion of a pair which has the character of a diffusion 
'source'. It should again be emphasized that neither of these results is a uniformly 
valid approximation to the solution of the full problem as t + 00 (i.e. the 0($2) errors 
cannot be ignored at  very large times t % t k ) .  

4.4. The long-wavelength limit ka < 1 
Analytic progress is possible for the case where ka -4 1 for the ' long' time for which 
t 9 t ,  but t -4 t k .  In that case, A -4 1,  so that kn(2h)/2Akk(2h) - l / n +  1 but p is large 
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so that (p+ Do k2)-l - p - l -  Do k 2 / p 2 .  Expanding (4.7) and (4.8) accordingly, and 
noting that 

jg(ka) = - $ k ~  + & ( k ~ ) ~  + . . . ; j;( ka) = $- &(ka)2 + . . . ; 
j i ( k u ) = & k u +  ...; j ~ ( k u ) = O ( ( k a ) n - l )  as ka+0  n 2  1 ;  

we have 

F % 1 - 7 ++T2 + #[ - 8( 1 - $ ( k ~ ) ~ )  + * ( k ~ ) ~ 7  + 4( 1 - g ( k ~ ) ~ )  7’ + . ..I, (4.13) 

Fs N 1-7 ++T2 + . . . + 4[2( 1 + z ( k ~ ) ~ )  7 -  2~~ + ...I, (4.14) 

and hence in particular that -ps/k2Fs - Do(l -24) on this timescale. As noted in 
$2.3 this value is the long-time self-diffusivity DL. This value has also been obtained 
by Hanna, Hess & Klein (1982) and by Ackerson & Fleishman (1982). 

The same result can be obtained more succinctly by the method of $3.5. In  the 
case of our excluded-annulus model, the governing equations (3.24)-( 3.26) can be 
written 

V z p  = 0 

3 . V p  = ikk-3 

(r  2 2a) 

( r  = 2a) 

p + O  as r+oo 

with solution 

Then, by (3.27), 

4a3k - r p = - - ,  
r3 

= Do( 1 - 24) (4.15) 
as above. 

This result has been derived also by Lekkerkerker & Dhont (1984) using a ‘steady’ 
method. Hanna et al. (1982) and Jones & Burfield (1982) have gone further and shown 
that the velocity autocorrelation function for a tracer particle described in $2.2 is 
proportional to (Do t / a 2 ) 4 .  It follows that the asymptotic approach to the diffusivity 

The analogous result for the dominant term in F shows that -p /k2F differs 
only by terms of order O((ka)2 )  from its initial value, as anticipated in $2.3, i.e. 
Dc = D0(l+84)  either from the initial value (4.6) in the limit ka+O, or from the 
equation above. 

= Do( 1 - 24) involves a decaying term proportional to (Do t/a2))-!. 

4.5. The short-wavelength limit ku P 1 
Again analytic progress is possible here but now in the case when t P t ,  and t 4 t,. 
The first restriction means that this limit is inapplicable to the interpretation of 
light-scattering experiments, but we include it in brief for completeness. 

Extracting the asymptotic form from the harmonic expressions (4.7) and (4.8) is 
difficult because the contribution from all harmonics are comparable. It is easier to 
perform a boundary-layer analysis for the original problem forj2. Near r = 2a we find 

where I” . 
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This then gives a long-time behaviour 
48 q5 e-i7 

F - F, - e-'+---. 
(2x)n ka 

(4.16) 

4.6. Numerical results 
These are discussed in detail as a special case of the problem with full hydrodynamic 
interactions in $5.  

5. Suspension of hard spheres, with hydrodynamic interactions 
We turn finally to a more physically plausible system of hard spheres with 

hydrodynamic interactions. In what follows we neglect interactive potentials and 
take P = 0. The problem to be solved is 

(5.1) - "2 = -k*D,*kf2+V*(Dr*Vj2) ( r  > 2a), 
at 

with boundary condition 
(r--u)-+O 3f2 as r-+2a, 

ar 
f 2  = e4ik.r at t = 0. and initial condition 

The scattering functions are given by 

F = -Do k2F- [2k* (Dll - D o / )  * k cos?&. r+  V - (D, * k )  sin+k*r]f2 n d3r, (5.4) 
r > za 

F, = -Do k2Fs- J [k-(D,,-D,/).k+V*(~D;ik)] e-iik-lf2 n d3r, (5.5) 
f > 2a 

in which we have used the fact that D, K ( r -2a)  when r+2a. Finally, the initial 
conditions for F and F, are the same as those for the hard-shell model of $4, namely 

(5.6) F(k, 0 )  = 1 +--ji(2k~); 124 F,(k, 0) = 1. 
ka 

For general values o f t  these equations must be solved numerically, but for special 
values some analytic progress is possible as suggested by $4. 

5.1. Short times t ,  4 t 4 t ,  
In $3.4 we have produced results for P(k, 0) and P,(k, 0) valid in the dilute limit 
for all values of ka, and general potentials P. In  $4.2 we found that for an 
excluded-annulus model P is unbounded at t = 0. The question arises as to whether 
a second cumulant (Pusey & Tough 1983) can be defined here, and if so to determine 
its value. As in $4, we first Laplace transform the governing equations (5.1)-(5.6) and 
then examine the limit p +  00. Equations (5.1) and (5.3) give 

1 1 
+- 9 7 2  

3 = -e4ik'r 

2 P  P 
in which pj2 = -k*D,-k32+~-(D,.~3z) ( r  > 2a) 

and by (5.2) (r-22a)--+O v 2  as r+2a. 
ar (5.7) 
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Now suppose that J2 is expanded in inverse powers of p .  This suggests 
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provided that each term satisfies the boundary condition (5.7). But using lubrication 
methods Jeffrey & Onishi (1984) have shown that near r = 2a (in fact very near: 
2a < r < 2 . 0 1 ~ )  

llD, I( - A,(r - 2a) + A,(r - 2 ~ ) ~  log ( r  - 2a) + . . . 
where A ,  and A,  are non-zero constants. It follows that 

9 efik.r ( r - 2 a )  log ( r -  2a) x (regular function of r )  near r = 2a, 

which satisfies the boundary condition, but that 
9 2  e$k. r log ( r - 2 a )  x (regular function of r )  near r = 2a, 

which does not. Hence we try an alternative expansion for p +  00 in the form 

where g is forced by the above irregular logarithmic term. Writing x = r-2a,  we find 
that near r = 2a g satisfies 

= log x x (regular function of x ) ,  

ag 
ax with x-- - to  as x+O. 

Putting E = px,  this gives for p --f co 

E-+--g a29 ag = log(-) E 
at2 P 

Thus g K logp as p- t  co, and so 

Now (5 .5)  and (5.6) give 

and similarly for F .  Hence 

This demonstrates that the first and second cumulants at t = 0 are both finite, but 
that Fand  

To determine the constants a, /3 i t  only remains to substitute the expression above 
for?, into the integrals for P and ps and to identify the coefficients of l / p 2  and l i p 3 .  
If the diffusivities Dij(r) are written in the (general) form 

are unbounded at t = 0. 
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where A, and Bt, are dimensionless functions of r ,  and A, and B, are defined similarly 
with reference to D,, then we have 

V . 0 ,  = 2DOC(r)-, 
r 
r 

where 

The angular integrals in the expressions above may then be performed analytically 
to give, after some algebra, 

a, = -1; (A11+2B11-3)r2 dr, 

and 

2 1 2 1 
-Alljo+-(All-Bll)jl+- C2 ( j --j kar ’) --Cj ka 

kar Pal2 

sin kar cos kar 
in which kar ’ (kar)2 kar ‘ 

Finally, using (A 2) from Appendix A, the mean-square displacement of a particle 
may be identified as 

j, = _ _ _ - ~  sin kar j, = - 

6 
ka+O k2 

<r2) = -Limit - log F, 

= 6( 1 - $a,) Do t - 3 Limit (1 -$a, + $& + ($a,- 1)2) 0: k2t2 
ka+o 

= 6D0t-$ r2C2 dr+O(t3 lnt) . 1 
The result for as (which is independent of ka) is given also by (3.21) and has been 

found by several authors (e.g. Batchelor 1976; Pusey & Tough 1983). A numerical 
evaluation with Jeffrey and Onishi’s (1984) hydrodynamic data gives a, = - 1 3 1 .  The 
small discrepancy from Batchelor’s result (2.2) arises from numerical rounding and 
cutoff errors. 

The expression for a, which does depend on ka, is equivalent to (3.20) and SO is the 
same as the result of Russel & Glendinning (1981) for the modulated sedimentation 
problem discussed in $3.4. The variation of a with ka is sketched in figure 2. 

The results for p and /3, and the quadratic term in ( r 2 )  are new for hard spheres 
with hydrodynamic interactions. Pusey & Tough (1983) have derived expressions for 
bs and ( r 2 )  which are similar in structure to those above but which differ from them. 
Their approach starts from a Langevin rather than a Smolochowski equation, but 
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I I I 1 -w 
1 2 3 4 5 6 7 

ka 

1 2 3 4 5 6 7 

FIQURE 2. The first and second cumulants. 

ka 

the discrepancy between the two results appears to arise from their treatment of the 
singular potential near r = 2a for hard spheres. Specifically, in evaluating expressions 
of the form (their equation (2.31)), 

the second derivative has the character of a generalized function and although 
A,, -Al2 vanishes a t  r = 2a, a non-zero contribution results. 

A remarkable feature of the expression above for ( r 2 )  is that  whatever the form 
of the diffusivity D&), the first correction of the mean-square particle displacement 
from linearity in time is always negative, i.e. other particles always act to hinder the 
diffusion of a test particle. On evaluating the integrals we find 

The sign of the second term differs from that of Pusey & Tough (1984) but accords 
with their intuitive physical expectation. 
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The cumulant expansion derived in this section will only be valid for very short 
times, times so short that i t  is unlikely that they can be resolved in an experiment. 
While the relative diffusivity D, vanishes at  r = 2a, it does so only within the 
lubrication region 2a < r < 2 . 0 1 ~ :  outside this region the diffusivity appears to tend 
to a non-zero constant as r approaches 2a. Hence while two particles diffuse over the 
separation 0.01a, we can expect to see the cumulant expansion. But at later times, 
t > a2/Do,  we would expect to see the ti behaviour of the excluded-annulus model 
which had D, 4 0 at r = 2a. 

5.2. The long-wavelength limit ka 4 1 
As shown in $3.4, 0% may be evaluated from the long-wavelength result by 
steady-state methods. Batchelor (1983), has shown that 

DL = D0(1-2.104), 

and we, using more accurate hydrodynamic data, obtain -2.06. 
The other wavenumber-independent property which emerges from the ka 4 1 limit 

is the full time-evolution of ( r 2 )  as noted in Appendix A. Equation (A 2) relates ( r 2 )  
to F,, and thus we can write 

( r 2 )  = 6 D o t [ 1 - ~ f @ ) ] ,  

l.Sl+O.l86 as E+O,  

2.06 as t + m .  

Anticipating slightly the discussion of the next section we can then determinef from 
the numerical solution. A graph off together with these asymptotes is plotted in 
figure 3. It is notable that the timescale of variation off is indeed t ,  as predicted in 
$2.2 rather than the (longer) time t4.  

5.3. The short wavelength limit ka % 1 

In this limit, the Fourier wave is decaying in a medium whose diffusivity varies on 
a lengthscale large compared with the wavelength. Thus to leading order 

f a  eiik.r--k.D,,(r).kt, (5.8) 

The assumption that the spatial variation in the diffusivity is smaller than that in 
the phase factor yields a restriction T = Do kat 4 ka. Note that, unlike the case with 
no hydrodynamics, there is at leading order no effect of a boundary layer at r = 2a, 
because D, + 0 as r + 2a. 

5.4. Numerical culculatim 
The equations for f,, F and Fs including the full hydrodynamic interactions and a 
hard-sphere repulsion at touching r = 2a have been solved numerically. The diffusion 
equation for f2 was solved having first subtracted off everywhere the far field 
exp ( -i ik.r-k2Dot),  the remaining disturbance field being limited to r 5 (4D0t)k 
Forward time-stepping and central space-differencing was employed on the interior 
of an equispaced (r,  @-grid. Attention was restricted to 0 < 8 < in using the 
symmetry of fa about 8 = in (real part even, imaginary part odd). The condition 
that the disturbance decayed at large r was applied in the crude form 

6 P L M  167 
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f 

- 2.00 

-1.90 

- 1.80 
2 4 6 8 10 12 14 16 6 -  

FIQURE 3. The time-dependent factor f (D ,  t / d )  in the mean-square displacement of a random 
walk. 

fz = exp ( - #ik * r - k2Do t )  at r = T,. The boundary condition was applied to second- 
order accuracy using values of the diffusivity (which varies rapidly near to touching) 
extrapolated from values at the interior grid points. The diffusivities were evaluated 
from expressions accurate to O(r-l5) supplied by Dr D. J. Jeffrey, which gave the 
diffusivities everywhere accurate to within 1 %. The volume and area integrals for $’ 
and Fs were performed to second-order spatial accuracy. It was found necessary to 
apply a correction to the volume integral of kD,c?f(a/r,) e-kxDot for the far-field 
part of f2 beyond rao. A numerical accuracy within 1 % could normally be obtained 
with numerical parameters Sr = ?p, 68 = x/18, k2DoSt = and roo = 12a; with a 
finer spatial resolution being necessary when ka > 3, and with greater values of roo 
being necessary when a2Do t > 60. 

The program was tested against some simpler but cruder schemes, for internal 
consistency in the behaviour of the rounding errors, for the initial values and initial 
slopes which could be calculated analytically, and against the long-time asymptote 
found in the previous section for the excluded-annulus model (diffusivities all set 
to Do). 
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FIGURE 4(a, b) .  For caption .we next page. 
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(c) 

0 2 4 6 8 10 12 14 16 18 
Do k2r 

FIGURE 4. Numerical results for the O( $) term in the time-dependent light-scattering diffusivity 
at (a) ka = 4, ( b )  1 and (c) 2. The superscripts H and 0 denote the cases with and without 
hydrodynamic interactions. The subscripts C and S denote the full and the self-light-scattering 
functions respectively. 

The numerical results are presented in figures 4-9 in the form of the O($) term for 
the time-dependent diffusivity, defined as 

= l+$D,(k, t )+O($’) .  

Superscripts H and 0 are used to denote results with and without hydrodynamic 
interactions respectively in the excluded-annulus model. The second subscripts C and 
S are used to denote the full and the self-scattering functions. 

Figure 4 gives the results for ka  = 4, 1 and 2. After a short initial adjustment, the 
diffusivity is fairly level before finally growing exponentially to -a. When 
hydrodynamic interactions are included the initial adjustment is smaller and the level 
period is more nearly constant. Remembering that experimental observations are 
restricted to T = Do k2t < 7 (because e-’ < we speculate that this level period 
accounts for the ease in measuring a ‘long-time’ diffusivity in an experiment. We 
must emphasize, however, that the light-scattering experiment does not describe a 
simple diffusion process, so that there is no true ‘long-time’ diffusivity (at least within 
our O($) theory). The reason that there is no asymptotic diffusion process at long-times 
is that the microstructure described by fi does not tend to a quasi-equilibrium but 
instead, on the timescale of interest, t, is always evolving. Finally, we note in figure 4 
that the difference between the full and the self-scattering diffusivities decreases 
as the wavelength becomes shorter. 

The short-time behaviour for the excluded-annulus model, (4.9) and (4.10), gives 
a ~4 term in the light-scattering diffusivity. This behaviour is brought out in figure 5 
by plotting the results of the numerical calculation (at ka = 1) against 7:. It is 
seen that the asymptotic result up to provides a lO%-accurate estimate only in 
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D, kV 

FIGURE 5. The short-time behaviour for the O(q5) term in the time-dependent light-scattering 
diffusivity : -, numerical results for the exoluded-annulus model at ka = 1 ; ---, the aaymptotic 
results (4.9) and (4.10) up to the 74 terms; -.-., include the next ~-tems. 

T = Do kzt < 0.2. Adding the next T-term does not improve the estimate. For the case 
of hydrodynamic interactions, the short-time behaviour lasts for too short a time to 
be of interest. 

The long-time behaviour for the excluded-annulus model, (4.11) and (4.12), 
predicts an exp + T / T ~  form of the light-scattering diffusivity. This behaviour is brought 
out in figure 6 by plotting the results of the numerical calculation (at ku = 1) on 
log-linear paper. It is seen that the mymptotic result for the full scattering function 
provides a 10 %-accurate estimate when T = Do kz t > 13, while the similar result for 
the self-scattering is not within 10% until 7 = Dok2t > 23. For the case of 
hydrodynamic interactions, the long-time behaviour also seems from the numerical 
calculations to be exponential. We have been unable, however, to construct an 
asymptotic theory owing to difficulties associated with the slow r-l decay in D,. 

A t  long wavelengths it is possible to diffuse over many particle radii, and for the 
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- 109 

- 102 

- 10 

-1 
6 8 10 12 14 16 18 20 22 24 

FIQURE 6. The long-time behaviour for the O($)  term in the time-dependent light-scattering 
diffusivity. The solid curves are the numerical results for the excluded annulus model at ka = 1 
while the dashed curves are the asymptotic results (4.11) and (4.12). 

Do k2t 

microstructure described byfi to come to some quasi-equilibrium, before the particles 
can diffuse through a wavelength, i.e. t ,  4 t k  when ka 4 1 .  As discussed in $83.6 and 
5.2, for t 4 t ,  the full light-scattering function F is described by a diffusivity D,, 
which hardly changes from its initial value. This is confirmed by the numerical 
calculations, e.g. D z  changes by less than 0.2 Yo from 7 = 0 to 7 = 10 when ka = 0.1. 
The self-diffusivity D g  on the other hand changes on the timescale t, from its initial 
value to a plateau value which it holds for St ,  < t 4 t,. Figure 7 shows this behaviour 
for the case with hydrodynamic interactions for ka = 1 ,  a, and &. Referring back 
to figure 4(a) ,  we see that the plateau effectively extends to t = 16t,. 

While the plateau value of D,, for hydrodynamic interactions is - 2.06 and without 
hydrodynamics is - 2.00, there are circumstances in which the value of the plateau 
can lie outside this narrow band. We have made some calculations for particles with 
a hard potential which only acts to exclude particles becoming closer than r = 2a, 
but we have allowed the hydrodynamic radius of the particles to be smaller at  R, 
(6 a) .  Note that the results are normalized on the excluded-volume radius. The 
results for the plateau value of DZ on the timescale t ,  4 t 4 t, are given in figure 8. 
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iii 

b 
0 4 8 12 16 20 

Do t /az 

FIGURE 7. The long-wavelength behaviour of DZ showing a plateau on timescale t,  4 t 4 t,. 

0 0.2 0.4 0.6 0.8 1 

Rn/a 

FIGURE 8. The dependence of the plateau value of DE on the ratio of the hydrodynamic radius 
R ,  and the excluded-volume radius a of the particle. 
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0 2  4 6 8 10 12 14 16 18 

FIQURE 9. The short-wavelength behaviour at (a) ka = 3 and ( b )  5. The broken curves are the 
asymptotic results corresponding to (4.16) and (5.8). 

There is a non-monotonic variation in R,/a, with a minimum value of 1.12 at 
R, = 0 . 5 8 ~ .  

The short-wavelength behaviour is represented in figure 9 by the results for ka = 3 
and 5. The results show that the values of the full and the self-diffusivities approach 
one another while 7 Q ( k ~ ) ~  (i.e. t < t a )  as ka+ ol). Also plotted in the figure are the 
asymptotic results corresponding to (4.16) and (5.8). These asymptotic results are seen 
to apply when 7 < 2ku. 

6. Discussion 
We draw together in this section the principal conclusions of the paper. 
First, we note in regard to the suspension itself, that at non-zero particle 

concentration the motion of an individual particle in the suspension is not purely 
diffusive because of its interactions with neighbours except for very long and very 
short times. This result is now well known, but more surprisingly we assert that the 
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time at which the asymptotic diffusivity becomes established is independent of the 
concentration (in the dilute limit) and is simply that taken for a particle to diffuse 
across its own length (i.e. it  does not have to cross the ‘cage’ to its nearest neighbour). 

Second, in regard to the scattering we observe that no exact theory (including this 
one) for a dilute suspension applies when Do k2t % 1. This does not preclude the 
possibility that such a theory could be constructed, but indicates at such long times 
multiple interactions are bound to be as significant as pair interactions. 

Third, we have demonstrated that the analysis of experimental data by short-time 
cumulants is difficult, when the interactions between particles is via hard rather than 
soft interparticle potentials. The first cumulant is always defined, but second and 
higher cumulants may be infinite for hard systems. 

Fourth, for general times we have shown that in general both F and F8 are 
non-exponential functions of time. 

The authors would like to thank Dr P. N. Pusey for his helpful comments. 

Appendix A. The relation between down-gradient tracer diffusion and 
self-diffusion 

The purpose of this Appendix is to establish the formal identity of tracer diffusion 
and of self-diffusion as defined in $2. 

Analogous results have been known in the literature of simple liquids for some time 
(Rahman, Singwi & Sjolander 1962; Boon & Yip 1980). In  the context of Brownian 
hydrodynamics, Hess 6 Klein (1983) quote some of the results below (in particular 
a version of (A 2)) and establish them by means of a propagator formalism. Here we 
prefer to use more simple-minded probabilistic ideas to generate the less-sophisticated 
results we need in the body of the paper. 

When the processes are purely diffusive, so that the movement of a test particle 
is given as a sum of random displacements whose statistics are stationary in time, 
then the probability density for particle position is Gaussian. This is indeed the case 
for dilute systems, and for both the long- and short-time asymptotes for concentrated 
systems (see $2.2). In such circumstances it is well known that the constant of 
proportionality for the tracer flux can be identified with the self-diffusivity. But for 
concentrated systems, the spatial probability density is not Gaussian for intermediate 
times when a test particle is interacting with its neighbours, and it is no longer obvious 
how the ‘ self’ and ‘tracer ’ statistics are related. 

Consider first a monodisperse suspension (of arbitrary concentration) and suppose 
that the probability distribution at time t for the ensemble-averaged displacement 
r of a test particle which starts at the origin at t = 0 is p(r, t). Depending on the 
concentration of the particles and the interactions between them, p may not be 
Gaussian or even isotropic. Let p be normalized so that 

p(r ,  t) d3r = 1. s 
The mean-square displacement of the particle in the 2-direction at time t is then 

(x2> = z2p(r, t)  d3r. s 
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Alternatively, consider the down-gradient tracer flux of particles (for the same 
particle species) discussed in $2.2 for which we anticipate that 

We seek to show that 
Ftr = -D"($, t)*V$tP. 

X2). 
i d  
2 dt 

0:; = - -( 

Suppose that, without loss of generality, V q r  is in the x-direction and that the 
gradient is small in the sense I aV$tr I 4 $tr. Then define 

P ( X ,  t )  = Probability [particle initially at the origin lies in the region x > X at 
time t ] .  

Now the number of particles which lie in the region x > 0 a t  time t ,  N(t) ,  can be written 

(Number density of particles starting at x) x Prob. [particle starting co 
N ( t )  = [ dx 

J -, at x is in x > 0 a t  time t ]  

because the constant concentration $tr 

sufficiently small that second and higher 
across unit area of the plane x = 0 is 

generates no flux, and V g r  is assumed 
derivatives are negligible. Hence the flux 

which proves the linearity of Ft' in V$tr anticipated above. Finally, 

OD d P  i d  

as required. 
Further, integrating this relationship for the isotropic case, we have 

( r 2 )  = 6 l  Dtr dt. 

This formula can be used to infer ( r 2 )  from tracer light-scattering data as 
follows. If ka % 1, then the gradient of the tracer species is indeed small since 
aVqPr/qPr = O(ka) .  In consequence the analysis above is valid and 

Now for the tracer light-scattering problem (2.4) shows that Fg may be identified as 
the Fourier transform of $tr and so 
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and hence 

in the limit ka+O. 

6 
( r 2 )  = -- k2 1 OgFS 

Appendix B. The approximation of diluteness for the Smolochowski 
equation 

We suppose that the concentration of particles q5 4 1, and seek to find a simplified 
approximate form of the Smolochowski equation valid as ++O and appropriate for 
small sets of interacting particles. 

We start from the full equation (3.3) for N particles 

_-  appvv , -Dt ,*(v ,P+Pv,V)  
at 

and define diffusivities 0:;) and potentials V(@ for sets of just q interacting (and 
otherwise isolated) particles as 

V(*)(xl, ..., xa) = Limit V ,  

D;;)(X,, ..., x9)  = Limit D,. 

Note that the superscript (q)  is needed only in the appendix; q = 2 is to be understood 
throughout the body of the paper. The probability density P9 for sets of q particles 
is given by 

Xq+1, .... x”v-+w 

.q+l, ..., xN*m 

- 

P*(x,, ..., x*; t )  = P(x,, . . . , x N  ; t )  d3x9+, . . . d3xN. 

On integrating the N-particle equation we have therefore 

5 - - N !  V t - s  D,,*(V5 P+PV, V )  d3x9+, ... d3xN, 
at (N-q ) !  y K - Q  

in whichj runs from 1 to N. Since the flux of P through the walls of V N  is zero, 
the summation on i runs only from 1 to q. The above equation may be rewritten in 
a form suitable for approximation as 

in which (B 1) 

and in which both i and j now run from 1 to q and k runs from q+ 1 to N. 
Now, D ,  - Di;) and V- V(*) are non-zero only when one of x9+,, . . . , xN lies within 

a distance of O(a)  of one of x,, . . . , x9. It follows that the second and third terms on 
the right-hand side of (B 1) are both O(q5). The final term is the flux of particle i due 
to gradients of particles k = q+ 1, ..., JV (which would vanish in the absence of 

y m p  9 -  = v  t .D‘*).(P gjr 4 v j r  V(P)+V 5 p 9 )  
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hydrodynamic interactions). Hence it too is at  most O($) ,  as q.5 + O .  Thus, correct to 
O( 1 ), Pq satisfies the q-particle Smolochowski equation 

The O(q.5) correction for P, 
In the body of the paper we require P, correct to O(q.5) and hence a more accurate 
approximation than (B 2) is needed. Taking q = 1 ,  and noting that V(l) = 0 and 
D(l) = D o / ,  (B 1 )  becomes 

3 = D , v ; P , + v , - ~ ,  
at 

j = N ( D l , - D o / ) ~ ( P V l  V+V,P)  d32, ... d32Jv s with 

+ N Do PV, V d3x, . . . d3xN 

+x Dfk*(PVk V + v , P )  d32, ... d32Jv (k = 2, ..., N). 

Jv Jv 

s 
Now 

D,,-DO/= D- x (Dii'(x13 xk)-Do/)-DO/]+ x (Dit'(x1, xk)-Do/) .  [ k - 2  k - 2  

The square-bracketed term vanishes unless at  least two of x,, . . . , xJv lie within an 
O(a) distance of x, ,  i.e. it will generate an O(q.5,) contribution. It is similarly possible 
to write Jv Jv v = V -  x V(2)(x1, xk)]+ V(2)(x1, xk). [ k - 2  k - 2  

Then, on substituting these results in the expansion for j ,  and using the fact that the 
particles are identical, we have for the first term of j 

J(Dll ( ' ) (X1,  xk ) -Do / )* (PVl  V+V,P)d32,  ... d32Jv+0(q.52) 
k - 2  

= N ( N - l ) s ( D g ) ( x l ,  x 2 ) - D o / ) ~ ( P V ,  V + V , P )  d32, ... d32Jv+O($2) 

= s (Di?-Do/)  * (P, V, V@)  +V,  P,)  d32, +O(q.5,). 

The remaining terms can be simplified similarly to yield, correct to O($), 

as used in the body of the paper (3.10). 
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Appendix C. Hard-sphere repulsion: the boundary layer at r = 2a 

layer outside r = 2a such that 
We suppose that for pairs of hard spheres a repulsive potential vh exists in a thin 

0 ( r  G 2a) I 1 ( r  > 2a), ‘outside’ the layer. 
e-vh(r) = 

Thus f2 rises from zero for r < 2a (an overlap impossible) to a value (which 
depends on angular position 8’9) just outside r = 2a. Within the layer, the 
distribution off, is approximately Maxwell-Boltzmann and thus 

The equation (3.13) for F then gives 

F=-D,k2F- J [k*(D,,-D,I)*k 2 cos!jk.r 
r b 2a 

+ (V * (D, - k) - k *Dr - V( Vh + P)) sina(k.r)] f in .  d3r. 

The contribution to the integral from vh and the boundary layer is negligible, except 
for the term 

” 
J k.D;Vvh sinak-r f a n  d3r 

r 2 2a 

- e-Vh dr 5 boundarylayer 
= k.Dr s i n i k - r z n  d2r.3 

r-2a 

=-J k*Dr*?sin! jk*rf in  d2r. 
r-2a 

This is the ‘extra’ term in (3.16). The result (3.17) for Fs may be derived similarly. 
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